Team: Anulal VS (136130012) Gautham Varma (136130005) Manu Revi (136130009)

Affordable Housing :Fitting more into volume

Guides: Prof. U A Athavankar Prof. Vijay Bapat Prof. B Bhaumik

IDC | IIT Bombay

- Cost of land increasing
- Space constraints
- Slums growing
- Short fall of about 25 million houses in urban india
- Lack of urgent action
- Increasing migrant population

Source: Census 2011

Proportion of slum households

Million Plus Cities	Proportion of Slum HHs to Total Urban HHs (%)
Greater Mumbai (M Corp.)	41.3
Kolkata (M Corp.)	29.6
Chennai (M Corp.)	28.5
Delhi Municipal Corp (U)	14.6
BBMP (M Corp.)	8.5

Source: Census 2011

	Super - compact
	Affordable
	DIY
	Incremental
	Temporariness
	Durability
	Effective use of volumetric space
	Cultural context in India
	Shared spaces
Project focus	Personalization / Customization

Problems to be addressed

Housing for BOPs

Space constraints

Problem statement 1

Maximum and efficient usage of space within a volume of 10'x10'x10' which could accommodate a family of 4 members with incremental provision which goes hand-in-hand with cultural context and family growth

Problem statement 2

Design the interiors which efficiently use each and every unit cubic volume present in the given space

Accessibility to higher levels

Problem statement 3

An aid to reach higher levels that could be drawn when needed without obstructing the utility of other spaces and also utilize the minimum volume.

Problem statement 4

Design space in such a way that they could be utilized in multiple ways taking usage time-span as a factor

Unhealthy living conditions

Rising cost of raw materials

Temporariness of available space / resources

Problem statement 5

Design the interiors and furniture which can accommodate the incremental needs of a user without affecting or obstructing other spaces.

Project assumptions

- Multi-storey building having modules of size 10'x10'x12.5'
- Walls of brick and concrete
- One exterior wall with windows and plumbing connections
- 6 ft corridor between opposite modules
- 100 ft distance between consecutive buildings

Data collection

User data collected over a span of 3 years

- User category
- Occupation
- Annual wages
- Life style

Activity analysis

- Understanding time slice of a family of 4 members

Available data

Data ref: HUDCO project

A visit to dharavi

- Videos + case study
- People innovatively using space
- IKEA DIY model
- Study of joints
- Current interior scenario

Our research

A visit to dharavi

Videos + Case study

- We the tiny house people (documentary)
- Cube and Cube 2 project
- Asian scenario
- Convertible furniture

source: http://mreverydaydollar.com/; http://kristabeck809files.wordpress.com- accessed on 2-11-2014

Asian scenario

Caged homes in HongKong

source: http://i.huffpost.com/; http://3.bp.blogspot.com/- accessed on 20-10-2014

IKEA DIY model

- Assembly instructions
- IKEA joints

3

source: Poang instruction manual - IKEA

Study of joints

- Bicycle joints
- Exhibition panel joints
- Tripod joints
- Warehouse construction joints
- Scaffolding

Present interior scenario

- Weak structure
- Limited privacy
- No 'living' space; they adjust
- Less ventilation and natural light
- Unhygenic toilets / No toilets
- Steel as an accepted material

Necessities and desirables

People at the bottom of the pyramid

- Close to 90,000 2 lakhs per annum as income
- Living in slums in metro cities
- Tenured residents of the space

User profile

Design brief

In case of

- Space utilization
- Head room
- Higher level access

Compromises

	Super - compact
	Affordable
	DIY
	Incremental
	Temporariness
	Durability
	Effective use of volumetric space
	Cultural context in India
	Shared spaces
Focus	Personalization / Customization

Study of incrementality

Incrementality of need

Added-up furniture

- Bed space
- Kitchen space
- Storage space
- Levels
- Living space furniture

Static furniture

- Toilet
- Staircase
- TV space

Insights ____

Any stage furniture

- Puja
 - Dining space
 - Washing space

Design approach

Design approach ____ Applying agile n product design

Applying agile methodology in

Initial Brief				
3-D Volume exploration	Available data study	Secondary Research	Primary Research	
Finding volumetric efficiency		Articles, books and videos	Dharavi Visit	
Design Insights				
Design Brief Life Size Frame Joints Study				
Efficient Usage of Space/ Experiential Learning				
Focus on interior components				
Detailing				
Final Concept & Working Model				

Material Research

Focus areas

Bathroom + Toilet Kitchen Structural members

Initial exploration

Foam board mockups

- volumetric space
- vanishing space
- spaces underneath

Sketches and ideations

Drawings-

Life-size model

Incremental layouts

slotted angle + Flute board

- Fabrication

Steel structure prototype

Initial exploration _

Drawings ____

Section

Life-size model _

Populating space

Simulating ____

Life-size prototyping

- Bathroom + toilet space
- Kitchen space
- Structural members

Focusing on to the interior

Efficient usage of volumetric space

Pluggable

- Minimal assistance in installation
- Easily replaceable partition
- Reducing existing compromises

Bathroom + Toilet space _____

Concept 2

Concept 3

Multiple usage of space

- Time based space utilization
- Low compromise on ergonomic aspects
- Adequate privacy
- Material choices according to cost, availability, manufacturability and above all comfort of the user

Concept evaluation ____

Concept 2 detailing The base

- made of SS 202
- 2 inch skirting
- ridges
- flushed to the floor

The trap

- Positioning trap to consume minimum volume
- comparison of clear heights

Clear height comparison

Concept 2 detailing The base

The pan fixing

- Deep drawing
- Argon welding

Concept 2 detailing The base

The lid

- converting toilet to bathing area
- aluminium honeycomb sandwitch

Concept 2 detailing The partition

The panel

- Material choices based on pricing, quality and life span

- Corrugated steel sheet vs PP honeycomb

PP Honeycomb

Pros

- 1. Planar piece
- 2. Easy to cut (for window)
- 3. Easy maintenance
- 4. Space Efficiency
- 5. Easy to fix
- 6. Completely DIY

Cons

- 1. Material Availability at present
- 2. Cost-higher than corrugated steel sheet
- 3. Additional supporting members needed

Corrugated steel

Pros

- 1. Self supporting
- 2. Easy Availability
- 3. No additional joints
- 4. Easy Maintenance

Cons

- 1. Bending needed- Calls for tooling
- 2. Cutting not easy (for window)- additional tooling
- 3. Fixing door not easy

Concept 2 detailing The partition

The connection

- Related product study

source: http://klemlighting.com/; http://woodpeck.com/-; http://wolfcraft.com accessed on 20-10-2014

Concept 2 detailing The partition

The connection

- PVC extrusion

Concept 2 detailing The crown

- to hold the panel members together

- Easy to assemble and disassemble
- Efficient usage of volumetric space
- Incrementality
- Provision for user to populate
- Usage of floor space for preparation

Kitchen space

- 1'6" x 3'
- Rotating sink
- Triangular sink for min area
- Countertop for single burner stove
- Pull out stool and countertop extension

- 1'6" x 1'6"
- Rotating sink
- Triangular sink for min area
- Single burner stove on slide out
- Pull out stool

- ∎ 1'6" x 4'
- Rotating sink
- Curved countour for sink
- Provision to utilize floor space while preparing

Dedicated storage space

- Sink and countertop separated
- 1'6"x2 for sink ; 2'x2' for countertop
- Sink part made a static entity
- Usage of vertical space
- Negative spaces for storage
- Provision for people to populate

Concept evaluation ____

- Efficient usage of space (vertical and horizontal)
- Ease of access
- Simple and efficient
- Storage options
- Option for user to populate the space
- Ease of assembly and dis-assembly
- Easy to manufacture

Concept 4 detailing sink

Size increased to 1'8" x 2'
8" deep sink

Material

- SS 304

Strength

- Ridges for strength and partition

Drain and P-trap

- Drain positioned at rear corner
- Horizontal orientation for trap

Support member and connection

- Cantilevered T or L section
- Hiding the bolt

2

Connection detailing

Concept 4 detailing Countertop

- Size increased to 1'8" x 2'
- Height maintained at 2'8"
- Can be knocked down to flat parts
- Flexibility of positioning storage racks

Material

- SS 304 with thickness 1.2mm

Parts

Ň

- Countertop
- Legs
- Base

Concept 4 detailing Space

- Add on storages that could be attached to provisions in structural member

Vertical storage

- Mesh functioning as a hanging storage
- Posibility of incorporating a pulley system

Water can

- Jerry can support in the corner space

Racks

- Large and medium plates
- Hooks for glasses and other hanging utensils

Kitchen space

- Easy to assemble and disassemble
- Reduce manufacturing cost
- Locally available tools
- Provision for different layouts
- Flexible for the user to change

Structural elements ____

Joints classification

- Depending on the purpose it serves:
 - T1 between main column and main horizontal member
 - T2 between main horizontal beams
 - T3 between main horizontal beams and non structural orthogonal members

Concept 1

Material Mild steel

Sections

Main structural member : C-section (60mmx90mm) Orthogonal support member : C-section (50mmx50mm) Vertical columns : Square section (3mm-4mm thick)

Fitting

- Floor panels get flushed on to the height difference
- Welded C-sections on the vertical columns connects the horizontal members
- L sections for connections between inner members
- Spacer tubes to avoid bending

Concept 1 Visualization

Concept 2

- Emphasis to keeping the floor flushed

Material Mild steel

Sections

Main structural member : Open hat Orthogonal support member : Open hat Vertical columns : Square section

Fitting

- Grooves and holes given at joining areas to hold protrusions in the joining plates
- Connections through nuts and bolts

Concept 2 Visualization

Concept 3

- Emphasis to reduce the number of parts

Material Mild steel

Sections

Main structural member : square tube (45mmx96mm) Orthogonal support member : square tube (45mmx45mm) Vertical columns : square tube

Fitting

- Welding the joining pieces at the end of the members to be connected.

Concept 3 Visualization

Concept 3 Joints detailing

- T2 joint

Concept 3 Joints detailing

- T3 joint

Standardizing the components

- Same components to be arranged to create all 3 layouts
- identifying similarities in layouts
- Layouts broken down into grids

Standardized lengths

Orange : 10 ft Brown : 3 ft Yellow : 2 ft

Minimum number of members

6'6" x 4 nos (column) 10' x 7 nos (beams) 3' x 6 nos (orthogonal member) 2' x 5 nos (orthogonal member)

Standardized components

Post prototype comparison

User feedback

- Children were happy with their space
- Position of TV was a major issue for both parents and children
- Needs more storage space than comfortable headroom
- Ceiling fan not necessary
- Space above kitchen was appreciated
- Concerned about position of fridge.
- Toilet space was also appreciated.

The way forward

- Fully detailed prototype
- On-site implementation and feedback