Water fetching aid for rural women

By Sohini Guin (136130001)

Guide: Prof. Purba Joshi Co-Guide: Prof. G.G. Ray

Date: 27-11-2014

Content

Current Scenario

Need

Secondary research

Parallel Product Study

Field Study

Conceptualization

User validation

Comparative study

Recommendations

Current Scenario

- No direct water supply at homes.
- Most households have women fetch water daily.
- Neighbouring women go together in a group
- A woman brings approximately 50 litres of potable water for a family.
- For this, she must make 3-4 trips to the well/tap.
- Often she has a baby that she must carry along with her.
- Per trip: 20 litres of water.
- Weight of this water: 20 Kg.
- Total distance walked: 10 Km.

NEED

Heavy weight

Physiological problems

Neck pain, poor muscular strength

Problems from young age

Safety issues

Lack of time

Loss of valuable time for education

Design Objective

To reduce the effort and minimize the difficulties associated with fetching water by rural women.

Secondary Research

Modes of carrying water filled matkas

Fig 1: Head mode

Fig 2: Hip mode

Fig 4: Hand and hip

Parallel product study

Fig 7: Wello Water wheel	- Volume: 50-80 litres - Cost: Rs. 4500/- - Can be rolled on flat ground	- Drir grou - Rou - Up- - Clea
Fig 8: H_2 O water packs	- Volume: 20 litres - Cost: Rs.1500/- - Carried on the back or slung on the side	- Verv bac - Diff
Fig 9: Load carrier for labour	- Load carried 3 ways for ease - Caster wheels for trolley like function - Bamboo frame	- Rigi to n - Adju orie - Cas wor

-

Problems Drinking water rolled on ground Rough terrain Up-slope

aning

ry large load only for :k ficult to fill, clean

id structure, difficult nove head ustments to change entations ster wheels would not rk in rough terrain

Learnings from secondary research

- Should be applicable on different terrains
- Should suit different houses
- The whole process from home to the well and back has to be considered
- Minimum quantity of water that the product allows to carry must be 18 litres.
- It must be cost effective
- It has to be acceptable to the users

Field Study

Village : Dengachimat, Jawhar Primary occupation : Subsistence farming, temporary labour work

Primary users:

Women, age group - 30 to 45 Family of 5-6. Occupation : Farming, labourers No. of trips made : 3-4 Total time : 40 mins - 1 hour Discomfort or pain : temporary sore-ness in the back and neck.

They say they are used to it, so don't mind.

Terrain

- Slope: 15° 20°
- Rough terrain
- Stones, bushes
- Narrow path to walk on

Activity analysis

Inferences from field study

- Volume of water for a family of 5: 45 litres
- No. of trips made per day: 3-4 (for a family of 5)
- Terrain: Rough, narrow with stones and bushes

About Process:

- They carry an additional sieve and jerrycan attached to a rope.
- Loading of water is the toughest task.
- Keeping the matkas on the well wall first since lifting up the filled matkas is most difficult.
- Unloading of water is done with help from family members
- Usage of water at home must be considered.

Physiological problems:

- Pain
- Balance and position the matkas restriction in movement
- Strain in neck muscles while walking with the water.
- Pregnant women carry large quantities of water throughout the pregnancy.
- Durability
- Cost

Design Brief

To design an aid for rural women, to increase efficiency of fetching water

- 1. Should allow to carry 45 litres of water in 2-3 trips
- 2. Should reduce the effort required to fetch equal amount of water.
- 3. Should be carried ergonomically by one woman
- 4. Should allow easy loading and unloading of water
- 5. Should store water in a hygienic manner
- 6. Should minimize wastage of water on commute
- 7. Should be usable over different terrains of different villages.
- 8. Should allow easy pouring/transfer of water.
- 9. Easy to clean and maintain

Mind Map

Ideation: Concept clusters

Individual - Wearable

Fig 3: Shoulder brace

Fig 2: Hand held

Going back to the field...

Likes :

- Volume
- 2 persons

Dislikes :

- Wheels will wear off
- Atleast two persons will be needed
- Too heavy
- Added work of transferring water

Likes :

- Safety straps ullet
- Looks more comfortable
- Will avoid neck strains
- Something new to use

Dislikes :

Cannot carry a large volume of water like in the drum

Further explorations

Stackable drumsWeight testingFlexible bag

Concept evaluation

Criteria	Priority
Reduction in effort	1st
Ease of loading, unloading	2nd
Volume of water per trip	3rd
Ease of use	4th
Easy transferring	
Ease of cleaning	5th
Level of acceptance	

		Concept 1		Concept 2	
Criteria	Weighting coefficient	Not weighted	Weighted	Not weighted	Weighted
А	1	2	2	3	3
В	0.64	3	1.92	4	2.56
С	0.91	3	0.3	3	0.3
D	0.36	1	0.36	3	1.08
E	0.82	4	3.28	2	1.64
F	0.36	3	1.08	2	0.72
G	0.36	2	0.72	3	1.08
SUM	4.45	18	9.66	20	10.38
Rank		2			1

Testing the weight using a mock-up

or dupatta

- Weight distribution around the trunk of the body - Engage hands using a scarf

Final Concept

flap on the back - stitched on for the back container to slide onto, tocket-like Istructure for placing the container.

0

Tap to dispense water

Testing in the field

Mock up for testing was made of :

- .A modified backpack
- .10 litre jerry can
- .Two 5 litre jerry cans
- .Cotton cloth

Terrain: Narrow path, rough, with stones, pebbles and gets muddy during the monsoons

Activity analysis

Inferences

- The dupatta should be made more hassle free, and secured properly
- A provision to carry the sieve and rope must be available or must be incorporated
- Bigger mouth of the jerry can is necessary for easier pouring of water
- The side containers must be lifted easily in one step
- The bag when put down should be stable.
- Reduction in material
- Container must not wear off soon

Refined concept

big container (12 litres)

Full frame with support straps

Frame for big container

Backpack straps Support straps at waist Side container frame

Containers

Full render

Prototyping

User evaluation

User Evaluation results

- Loading is easy as the steps are reduced
- Users found it more comfortable for walking up slope.
- Users felt like they could look down, and even turn behind if needed very easily
- Unloading is the back container is slightly problematic as it feels like the container will fall off
- Jerrycan with tap is was considered a good option.
- One metal member touching the body causes pain over time
- Volume of water is good, but they think they can carry more.
- The frame harness size was too big

- Harness may need to be cleaned as the area around the well may be muddy during rainy season.
- The cap of the small jerrycan may get lost.

Comparative study

	Existing method	Propo
Volume of water	20 litres approx.	
Terrains	Difficult to use over hilly, rough terrain	Can be us
Weight	2 Kg	
Usability	Loading the matkas onto the head is difficult	Loading, a
Ergonomic considerations	Causes strain on neck muscles	Reduce
Maintainability	Repair-work is difficult	Repair
Cleaning	Cleaning the matkas is simple with hand	Cleaning difficult due

SLIDENO.37

g the jerrycans is e to smaller mouth

r-work is easy

es strain on neck muscles

and walking is easy

1.8 Kg

sed over different terrain

20 litres

osed method

Recommendations

Removable harness for cleaning

Funnel like sieve for small mouth

Slider cap for small jerrycan

System level intervention

- Increase awraeness about postural problems
- Campaign about the harmful affects of load carrying for pregnant women
- Install a platform like addition along the wall of the well. This can be done by cementing bricks to the wall of the well.
- It will give the women a platform to keep their things on.

References

Image sources:

- 1. Fig 1: https://mozes42.files.wordpress.com/2009/12/picture-009.jpg as on 19-08-2014
- 2. Fig 2: http://oregonstate.edu/terra/wp-content/uploads/2013/05/Woman-wWaterCan.jpg as on 19-08-2014
- 3. Fig 3: farm3.static.flickr.com/2428/3696799330_045d647110.jpg as on 19-08-2014
- 4. Fig 4: habitat.corp.ebay.com/wp-content/uploads/2014/04/well-3.jpg as on 19-08-2014
- 5. Fig 5: news.bahai.org/sites/news.bahai.org/files/imagecache/bwns_imagewidget/sites/news.bahai.org/ files/images/bwns_4844-0.jpg as on 19-08-2014
- 6. Fig 6: http://www.arthaplatform.com/news/286/can-indias-women/as on 19-08-2014
- 7. Fig 7: http://www.theguardian.com/global-development/poverty-matters/2013/dec/29/waterwheelburden-women-water-container as on 19-08-2014
- 8. Fig 8: http://dzinetrip.com/wp-content/uploads/2013/11/water-carrying-backpacks-pack-h2o-02.jpg as on 03-11-2014
- 9. Fig 9: http://www.carryology.com/insights/carry-culture/load-carrier-for-labour/ as on 20-08-2014

Thank you